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ABSTRACT

This report advances work in two areas relevant- to logic design in an

)I/LSI technolog. First, the theory of universal fmctions is advanced

to the full generality of finite mathematical structurss. A universal

function is a function which, by appropriate parametrization of a fixed

subset of variables, becomes an arbitrary preselected function of its

remaining variables. A sequence of theorems are proven which establishes

the character, interrelationship and means of synthesis of universal func-
tions for all finite mathematical structures, including all possible sett-

ings for logic design, culminating in the characterization of universal

fnctions as the universal elements of an appropriately defined functor

i• between two categories. Second, the theory of Galois logic design is

§ enhanced in variouz ways. Various Galois latticc-like operations are
SI aafined and coupared. Next, methods of converting Galois multiplication

gates to binary addition gates and to (alois linear gates are described.

Finally, techniquos are offered utilizing the Galois linear module to

reduce hardware at the cost of switching speed.
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SECTION I

INTRODUCTION

Both universal function theory and the Galois approach to logic design

are attempts:to eecape a paradox created by the rapid advances in elec-

tronic packaging of recent years. The advent of medium-to-large scale in-

tegration has reduced the cost of individual electronic components (e.g.,

diodes, transistors and resistors) to the -vanishing point while at the same

time greatly increasing the first-time cost of producing a new logic block

i(e.g., MSI/LSI chip types). The traditional approach tc special circuit

design was oriented to minimizing diode/transistor-counts, but this is

counterproductive in a technology in which the value such savings is

negligible and forces one to design an entirely new, uniterative, special-

purpose logic block.

The idea of creating logic blocks capable of generating arbitrary

functions of a fixed set of variables attacks the problem of multiplying new

logic module types by enabling a single logic block to serve in a great

variety of capacities. The universal modules of [i] and [2], for example,

and recent read only memories (ROMs) offer the extreme of this sort of

capabil-ty. The theory of such modules, initially developed in [3] and

extended in [4], now appears in full generality in Section Two.

The paradox above suggests that traditional optimization methodology

minimizes the wro:-g things in view of new technology. To be effective,

network simplification and reduction must take place subject to the con-

straint that the existing set of basic logic blocks- -the MSI/LSI chip
types--need not be increased. This is the major goal and advantage of

Galois lcgic design. Instead of the tradsitional Boolean operations like

I AND, OR, NOT, NAND, etc., representing a few transistors and diodes, the
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Galois approach utilizes operations like Galois multiplication and the

Galois linear function which represent whole MSI/LSI chips. Algebraic

reduction in Galois logic design thus reduces chip count without affecting

chip design with the same effect as algebraic reduction in Boclean logic

design, which reduces diode-transistor count without affecting the in-
ternal design of the individual Boolean gate.

A year ago research described in [ ,] offered a methodology for in-

ternal optimization of individual Galois gate and also discussed a

variety of approaches to generating universal Galois modules. The Galois

primitives most seriously considered there are Galois addition, Galois

multiplication and the Galo"s linear funci-ion. Section Three of this

report investigates several operations on a Galois field which act in a

manner similar to the Boolean AND-OR-NOT primitives.

Section Four discusses two special methods of Galois netwcrk design.
L The first is a special technique for enhancing a standard Galois multi-

plication gate to perform ordinary binary addition. The second system-

atically converts a standard Galois multiplication gate to a Galois

linear module in an optimal way.

Section Five utilizes trade-offs between switching speed and hard-

ware to design and uses generalized linear modules. The sixth and final

section recormends detailed investigation and development of global net-

work reduction algorithms as the next and final. major step in making

Galois theory a prs'ýical approach to logic design.

1.1. Basic Concepts of Finite Field Theory.

The sinplest field of all is the two-element Boolean algebra f0, 11

under the Boolean operations of EXCLUSIVE OR and AND. The following is

a formal definition of a field and the behavior of the field operaticns

of addition, multiplication and inversion.

A field is a set S of elements and a pair (f two-place operations +

and • with the following properties:

i. closure: for all x and y in S, (x + y) and (xy) are in S;

ii. associativity: for all x, y and z in S,

.x + y) + z x + (y + z), and (xy)z x(yz);

-2-



iii. commutativity: for all x and y in S,
x + y= y + x, and xy yx;

iv. distributivi-cy: for all x, y and z in S,

x(y + Z) = xy + xz;

v. Identiti.as: there exist an additive identity, zero, and a

multiplicative idr.ntity, one, in S such that, for all x in S8

x + 0 x, and x-l= x;

vi. inverses: for each x in S, there exists a unique element y

in S such that

x+ y= O,

and, for each nonzero x in S, there exists a unique element

y in S such that

xy- 1 .

A Galois field is a field with a finite number of e ementso

The order of a finite field is the number of members it has. If p is

a prime and n is any positive integer, there is a Galois field of order
np . Any two Galois fields of the same order are isomorphic, so for prac-

ntical purposes there is just one Galois field with p elements. This

field is designated by CF(pn) Of primary concern will be with fields

h&ving 2n elements. It is therefore convenient to let G representS, 2n
GF(2") and call n the power of the field. Define n as 2- .

Because Galois fields are fields, all the usual operations of ele-

mentary algebra carried out in the usual ways give correct results.

Moreover their finiteness permits further, very useful simplification.

in fields Gn every element is its own additive inverse; that is,

x + x U. (-1)

This can be viewed as a generalization of the EXCLUSIVE OR operation in

the two-element Boolean algebra GI. As a result, in such fields the ex-222

pression (x + y) can be rewritten x + xy + xy + y , whence

,2 2 2(x y. =x +y. (1-2)

S~-3-..
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For each x in it is clear that the sequence (x, x2, x3, ... ) must

eventually begin to repeat, since Gn has only 2n distinct elements. The

order of an element x in Gn is the number of terms !n the seauence

(x, x , ... ) before it begins to repeat. Every field Gn has elements of

order n *. These elements are called generatorb of the field. Zero is

the only element omitted frcm the sequence of powers of a generator. Let1 I

G. be the set of nonzero memberb of Gn. Every element of Gn can be given

a logarithmic representation as a unique power less than 2n of a gener-

ator. The order of an element of Gn is always a divisor of n*, the number

of members of Gn. From this it can be determined that the 2 nth member of

the sequence generated by any element x of Gn must be x itself. Thus,

x =x,

from which it follows that, if x is nonzero,

t xn*= 1, and
i •--i= x2n-2.

t There is a second method of characterizing elements of Gn. There

exist n elements 0 ..."", Wn-l, called a basis for Gn, such that every

element of G can be expressed in the form
S~n

S•o~0W + "'" + - -,

where each xi, i = 0, ... , n - 1, is zero or one. From this point of

view, Gn is an n-dimensional vector space. Thus, relative to a fixed

basis (w•0 , ... ,n-I) , each element x of Gn has a unique coordinate

representation (xO, ... , Xnl). By the ordinary operations of algebra,

(X3o + +...+ Xn-. l) + (Y&Oo + ... + Yn-lun_1) =

(xo G Yo)Wo + "'" + (Xn-i (D Yn1 l)wnl-.

S~-4-
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Thus, coordinate representation of the sum is the termwise mod-two sum of

the coordinate representations.

I' It would be ideal for Galois logic design if there were a simple and

direct relationship between logarithmic repre3entation of a G.alois field

and coordinate representation. Unfortunately, this ideal can be approached
with only varying degrees of success. The substance of much of

[5], dealing with Galois addition and multiplication gate synthesis, is a

search for reasorably compatible logarithmic and coordinate represen-

tationa of the same Galois field.

The familiar fields of analysis have an enormously rich variety of

functions which can be defined on them. Every function on a Galois field,

however, turns out to be a polynomial of degree less than the number of

elements in the field. For every one-variable function f defined in Gn,

there exist elements 0' ...""' n in G such thatI ~n n

f(x) =0 + YIX + "'" + an*xn"

This fact places an upper bound on the degree of complexity that need be

considered for any logical function to be synthesized. Furthermore, in

actual Galois synthesis, logic designers need operate only with simple

polynomials which, at worst, behave in a manner identical to those of

elementary algebra.

1.2. Miscellaneous Terminology.

Some fami.Liarity with two--alued Boolean algebra is assumed. The

WE two values are the constants zero and one. The same numerals are used to

represent the additive and multiplicative identities of Galois fields,

h •but their context will eliminate any essential ambiguity. Other Galois

constants do not have a standardized representation but will be given

representations relative to particular bases or generators.

The primitive operations or primitives of a Boolean algebra or a

Galois field are those basic operations in terms of which all other func-

tions on the structure can be defined. (In the literature, generators

-5-



of a Galois field are usually called primitives, but this usage is not

followed here.) A formula is a (well-formed) expression consisting of

constants or variables joined by primitive operations. A formula is a

reresentation of the function indicated by its table of values. A

k-variable function is a function with k arguments and can be represented

by a formula in k variables. The function obtained by replacing a subset
Sof its variables vil h constants is a parametrization of the function.A

Boolean translator is a sequence of Boolean functions of the same variables.

Set membership, union, and intersection are indicated in the usual
vz y c S, S U T, sn T. A sequence of individuals (soy ... , s_) is

symbolized "s_", with Is I defined as the length k of the sequence. Simi-

larly, a sequence of functions (fo0 (), ... , fk-l•)) is written f(x).

Let f be J-argument function sequence of length k, and let £ be k-argument

function sequence of length m. Then g'f is the j-argument function se-

quence h of length m such that, for all x,

hi 4) = gi(-4)), i = 0, ... , n-1.

A positive integer m underlined represents the set:

I m = f0, 1, ... , m-l1.

A sft S written with a positive integral exponent k represents the set of

all k-length sequences of members of that set. For example, 25 is the set

of all five-bit sequences. If S and T are sets, the Cartesian product

S x T is the set of all ordered pairs (s, t) with s in S and t in T. The

Vei w(b) of a vector b of binary values is its number of nonzero corm-

ponents. A unit vector is a binary sequence of weight one. The ones

vector of length n is the sequence of n ones. If V is a set of vectors,

w(V), the weight of V, is the sum of the weights of the memlers of V.

If k is a natural number, then B(k) is the reverse binary representation

of k; i.e., B is the function sequence sunh that
n-I

k 2 1 2iBi(k).

0

-6-
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A natural number is a nonnegative integer. A number is dyadic if it

is a power of two. A dyadic power of x is therefoi-e of the foim x21, for

some integer i. The symbols frl and Lrj r~present the smallest integer

not less than r and the integral part of r, respectively, fnr r a real

number. If r is an integer,

rrl = LrJ =r;

otherwise,

[rI- 1 + LrJ.

A function f defined on a set S with values in a set T is indicated by

f: S -T.

If each member of T is the image under f of some member of S, then 2 is

surJective. If each member of T is the image under f of at most one mem-

7 ber of S, then f is injective. The function f: S -- T is bijective if it

is both injective andsurjective; this is indicated by writing

A f: S*--*T.

Boolean variables will be written in small Poman type, and they will

usually appear subscripted.

Galois variables may be either Roman or Greek lower case literals but

will be subscripted only as Grecl !atters unless otherwise specified.

These conventions permit a coordinate representation of a Galois variable

x to be indicated by "_x", a sequence of Boolean variables. Analogous

conventions will exist for Boolean and Galois function symbols and func-

Stion sequences.

Let x be a sequence of length k and Z be a sequence of length 2

The Boolean function u(x, y) is universal for x if each of the 22k

functions of x occur Just once among the various parametrizations of u

I obtained by replacing y by a sequence of Boolean constar-s. The active

-7-
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variables of u(x, y) are x, while its selection variables are y. A

unilrersal Galois function is a GaloLZ function u(ý, T_) such that each

function .f F appears exactly once among the parametrizations of u with

respect to t.

A combinatorial logic network is associated with each Boolean

formula. Within a given technological framework, a Boolean formula tends

to determine tne network associated with it. The same is true of Galois

formulas. A logic network will be said to implement, gener-zte, or perform

the function represented by the associated formula.

SA logIc; net represents a formula as a graph, primitives of the

formula being indicated by nodes of the graph. Such a graph is directe

(in thu direction of signal flow) and is acyclic (i.e., loop-free). The

graph has inputs repressnti:tg the variables of the formula and an output

represeiting the value of the formula. The number of levels of a graph

is the length of the longest path in the graph, exclusive of input nodes,

and is independent of the direction of leveling.

SFigure 1 illustrates symbols which will consistently represent NOT

gates, EXCLUSIVE OF. gates, k-input AND gates and k-input OR gates in

dr'iwings throughout this repo t.

NOT EXCLUSIVE OR AND OR

Figure 1. Representation of the NOT Gate, EXCLUSIVE OR Gate,

k-Input AND Gate, and k-Input OR Gate



F SECTION II

UNIVERSAL FUNCTION THEORY

In this section the concept of a universal function is defined and

developed in the full generality of finite relational structures. The

interrelationshipq of universal functions are explored, and they are shown

to be universal elements of suitably defined functors.

In the years preceding 1968, government-supported research investi-

gated network optimization and fault-detection and correction for a

variety of formulations of Boolean circuitry whose function was determined

r by external control. This was an effort to anticipate the most important

challenge of the future LSI technology to logic design. Such a technology

promised vastly reduced marginal cost for circuit complexity with greatly

increased initial cost for a circuit design. The ultimate answer to the

new cost orientation was the universal module-the network capable of

generating an arbitrary function of a fixe6 set of inputs. Today's read-

only memory (ROM) technology owes much to the pioneering support of this

research by Air Force Cambridge Research Laboratories.

Through these years the only Boolean function actually investigated

in this research activity was that of the selected Shannon decomposition,

though the Reed decomposition was known. This work culminated in 1967

with the development of the most efficient means of generating the se-

lected Shannon decomposition in F2].

The first systematic investigation of the theory of universal E-olean

functions was published in [3]. There it was established that the Reed

and Shannon decompositions were just two of tfe 22n distinct universal

functions for n Boolean variables. The following year, based on this

work, category theory shed new light on the concept of universal Boolean

-9-



functions and hinted at their extension to other mathematical disciplines

([4]). In 1970, under the continuing support of AFCRL, tae new approach

to logic design utilizing Galois theory was investigated, and a theory

of universal Galois functions was developed paralleling those of Boolean.

algebra. It will now be seen that all of these results arise from the

finiteness of a mathematical structure. The theory of universal func-

tions is developed and the interrelationships of universal functicns are

derived in the full generality of finite mathematical structures. Since,

by its nature, eve.-y approach to logic design must be based on a conplete

finite mathematical structure, the theory presented here will be imme-

£ • diately applicable t÷ every possible approach to logic design, past and

future.

In this report relational stLuctures of interest are the two-element

Boolean algebra and dyadic Galois fields over GF(2). However, the results

proven here apply to all serious conteno.ers for the role of supplying the

mathematical foundation for logic design. Furthermore, they may be gener-

I alized to infinite structures in various ways. Concepts and terminology

from category theory are elementry and may be found in the appendix.

Throughout this section, R is assumed to be a fixed relational

structure with finite universe U of cardinality c. (A "relational

structure" is a mathematical structure with distinguished functions and

relations over a universe. Relational structures are a basic concept of

model theory and are discussed in texts such as r6] and r7l.) A function

u:Uk+d--* U is universal for k variables (with respect to R) if and only

if, for every function f:U--• U, there exists a c Ud such that

f(-) = u ax, .).

Universal functions have played a quiet but important role in logic

design theory. The Shannon or minterm decompcs-.tion (disjunctive normal

form) for variables xo, xl, ... ,

yDO1..x- v Yl01-k1v ... v y kx1.""-

j -!0-



was the universal function that immediately established the theoretical

adequacy of Boolean algebra for combinational logic design and at the same

W time offered a canonical form for Boolean functions. The maxterm de-

composition (conjunctive normal form) is another formulation of tbg same

universal function, while the Reed or ring decomposition,

YOyx YlxO .@Y2z Yo (2-2)

results in an entirely distinct universal function for k variables. Re-

formulation o•' (2-1) and (2-2) in terms of various logicai. primitives in

accord with shifting technology has supplied the foundaticn both for the

initial approach to the design problem and for various optimization

algorithms, such as the Quine-McCluskey method of prime implica.ts. in

addition, .uiversal Boolean functions served as a foundation for the

theory of Boolean function decomposition and led the way in various tech-

niques of function composition, such as "treeing" identical modules to

obtain more zoplex or more reliable modules. With a rapidly increasing

emphasis on building the maximum of flexibility into a minimum of module

Stypes, universal functions begin to assume a greater potential for direct

application.

The difference in the form of (2-1) and (2-2) suggests that differ-

ing universal functions may be preferred in different technologies r31.

This raises the question of the existence of other universal functions, not

only in Boolean algebra but in finite field theory. This section develops

the theory of universal functions in the general context of finite relation-

aal structures, indicates their interrelationship and shows that they are

the universal elements of appropriately defined functors.
SProposition 2.1. If u:Uk+d--* U is universal for k variables, then d-i k

equalsc. k
c

Proof. There are exactly c k-variable functions defined on U, and
d

there are c parametrizations of the final d variables. [

I_-77 ý
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When U is the two-element Boolean algebra B, c is two, and if U is
Gn, then c is 2n. Thus,

Corollary 2.2. If n is universal for k Boolean variables, then u has

selection variables [, and

Corollary 2.3. If u is universal for k variables over GF(2n), then u

Spossesses 2kn selection variables.f

The following theorem can be viewed as a generalization of the

SPtreeing" technique in logic design.

Theorem 2.4. Let JAI J=, IZI = k and Lki = I ., 2 J0 .

If u is universal for 3 variables and v is universal for k variables,
then u, v(, i(0)s z(c-1) universai for Q + k) vari-

ables x, y.

Proof. Take f a (Q + k)-argument function. For each k-length sequence a

of members of U, define fa,() as the J-argument function f(x, a). By the

universality of u, for each k-length sequence a, there exists a unique

c l-ength sequence b, depending on a, such that f a = u(x, b). Define

K -41 Ucj such that

f () = (, £La)) (2-3)

for a c U. By the universality of v, for each i c e, there exists a

unique c -length sequence p i such that gij() = v(Z, . From (2-3)

it follow that

f(X., V) = u(4, v(.., o), ... , v(, Pc1). (2-4)

(01 (c3-1)
The uniqueness of the parametrization n'), ... , pncj) is guaranteed
uniqueness specifications for the -,niversality of u and v. This can be

seen by supposing that
f _, Z) U uX, V (Z, q (), .9..., v(.Z, •(•-I'(2-5)

and replacing X by b in (2-4) and (2-5) for all possible b c a k.

FiguAre 2 and Figure 3 illustrate successive applications of Theorem

2.4 to obtain a universal module for ten Boolean vari&.jles. In Figure 2

both u and v are universal for two Boolean variables. That is,

JiA = Izi = 2, and = 4, = , 12, 2, 3.

-12-



Thus, the tree in Figare 2 is universal for four Boolean variables. Figure 3

takes the function generated by the entire tree of Figure 2 and u and takes v
as universal for y. 'Here,

-XI =4 and lyl 6, while
Sl.I S(-') 26 1 0 5

__ =2, i= 0, ... , 15.

Note that here the v-modules of Figurg 3 are regarded as universal for six
- Boolean variables although each has 2 function selection lines which are

suppressed in the figure.

5Zl z0

i I

z2 z3

1 0

YO v

Sz2 z3

z53 12

YO

yO

SI I I

6 4

SFigue 2. A Universal Tree for Four Variables withI

Two-Variable Universal Nodes
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Sx2 I
Iv
EvI

ii -

x 2

Figure 3. Treeing "to ObJtain a Universal Mo~dule ffor Ten Variables
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The next theorem is a generalization of the basic lemme. in Boolean

function decomposition theory.

Theorem 2.5. The function u is universal for. k variables if and only

if for each natural number j and each (c + j)-variable function f, there

exists a unique function sequence g:UJ -- Uck such that

f( ) = u( g)

induction on J. The case j equal zero restates the definition of un'-

versality of u, so assume the theorem holds for j equal m, m > 0, and take
f a (k + m + l)-variable function. Let Ixl = k. For each member a of U.,
define fa(x, y) = f(x, y, a); by the induction hypothesis, there exists

a unique function sequence •a:um-UCck such that f .z) = u(x, ga(y)).

This determines the (m + l)-argument function sequence g such that, for

each a 6 U, g(y, a) = ga(y), for which f(x, y, y u(x, g(Y y)). The

uniqueness of g is imMediate, completing the induction. The converse is

seen 'by taking j equal zero. 0]

Reinterpreting the v-modules of Figure 3, Theorem 2.5 implies that for

each ten-variable Boolean function f, there exist a unique sequence of six-

variable functions (vo, ... , v1 5) such that the network of the figure

generates f. In general, if j is zero (i.e., if y is the empty sequence),

g(y) is a sequence of constants and Theorem 2.5 states that a universal

function has a unique parametrization resulting in f.

The following theorem establishes the relationship that exists among

universal functions for the same number of variables and, with Theorem 2.4,

enables one to obtain all universal functions from a single function

universal for one variable.

Theorem 2.6. Let u be universal for k variables. The function v is a

universal for k variables if and only if for some function sequence

g:Uck.--.uck,

-15-



Proof. Suppose v is upiversal for k variables. By Theorem 2.5, there

exist function sequencee g and h, each mapping Uck into itself, such that
v•,- Y) -- u•, _g(y)) and u(x, z) = v•x, h.. From this it follows that

uxz) = u(-, (g h) L)). By Proposition 2.1 and the uniqueness of (g h),

this implies that (g.4) is the identity on Uck, whence g is invertible aid

therefore a permutation of Uck.

Suppose now that g is a permutation of U0c and v(,x, ) = u(x, g(y)).

If f is any k-variable function on U, there exists a unique sequence a

such that f(x) = u(-, a) v(-, g- 1 (a)). Any parametrization of v other

than g-(a) resulting in the same function f would violate the uniqueness

of the parametrization a for u, so v is universal for k variables as

required.,

Corollary 2.7. There are exactly (cc )I universal functions for k

variables over a c-element relational structure.[]

Corollary 2.8. There are exactly ( 2 2k) I universal functions for k Boolean

variables.0

Corollary 2.9. There are exactly ( 2 n2kn )I univ ersal functions for k

variables over GF(2n). 0

Certain categories are now defined. The first is the category

whose objects are the Cartesian products Uk, k = 0, 1, ... , withhos(k eno.oNxtoonsider
ho(g, /J consistý-ng of function sequences g:U k 3U.~ Net onie

the sequence of categoriesx m (m = 1, 2, ... ) whose objects F are the

sets of (m + k)-argument functions, k = 0, 1, ... . The morphism classes

j hoin(Fo,k, Fmr,J) of CXare the sets of transforms T mapping Fm,j into F%,k.

Let in be a fixed positive integer. There is a contravarient functor
In from6 toym defined by:

SmcUk) = Fmk k- = , 1, ... , and for g:Uk--*UjSm(g): Ie -- Fm,k
such that, for each member f of F o,k'I M (g)(f) f(-, g(,)), J =0, ,

-16-



Theorem 2.10. The function r' •s universal for m '.ariables if and only if

u e 0m(Ucm) is a universal -dement of I

Prcof. Let u be universal for m variables. By Proposition 2.1,

u e am(F cm). Theorem 2.6 guarantees that for each merber f of .m(uk)

there exists a unique function sequence h such that

f(-, A) = u(-X, !(y))I = (,I"(h)u)(x, y) .

m ucm)mThus, u € (U is a universal element of .

Let u be any universal function for m variables, and let v G Om(Uk)

be a universal element. Then there exists a unique function sequence
9 g:Ucm-- ) U such that

u(X, y) = (Jy(g)v)(x, Y) = vx, g(y)),

and there exists a uanique function sequence h such that

v(x, a) u(, h4()) = v(-, gh(z)) = v(x, h g(z)) - (J m~i))v)(x, z),

S~m Uc
E here i is the identity function on U. This also implies that

u(x, y) = u(x, h g(y)), from which it follows that h g and gjh are both

the identity on Ucl. Hence, h is a permutation of Ucm and, by Theorem 2.6,

v is a universal functicn. C

Figure 4 illustrates the activity of a universal Boolean function as

a universal element.

ini

S-17-
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xl
_2

I y y

a. The Universal Function b. The Desired Function f(x,, xl, x2 , Y0' Y1)

u Is Given. Is Determined.

XO 3"

uI
gg

X~~~~, ,-f kg

c. The Suitable Translator d. f(xd, xl, x2 y Y09 Y11 as
Is Found. Obtained from u.

Figure 4. Use of a Universal Boolean Function as a

Universal Element (Sheet 1 of 2)
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bles
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e. DiagrammaLic Sunmary of the Above Process.

Figure 4. Use of a Universal Boolean Funct-on as a
Universal Element (Sheet 2 of 2)
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SECTION III -1

GALOIS LATTICE-LIKE OPERATIONS

The dyadic Galois fields GF(2n) with Galois addition and Galois

multiplication can be regarded as generalizations of the lwo-element

Boolean ring, the field with primitives EXCLUSIVE OR and AND. Galois

addition and Galois multiplication are the Galois analogues of Boolean

EXCLUSIVE OR and AND, respectively. One question which presents itselfI is: are there natural Galois analogues of other Boolean p.imitives? In

particular, what are the Galois analogues of the Boolean lattice oper-

ation-a AND, OR, NOT? Answers to this question could offer competing
YE frameworks for logic design in an MSI/LSI environment and Galois struc-

tures whose algebra is closer to that of the traditional Boolean approach.

This section offers sets of lattice-like Galois operations, including one

s-et which gives a true lattice.

- _ The following is a list of basic identities for the lattice oper-

ations of Boolean algebra, with 'vM the disjunction operator, 'At the

conjunction operator and overlining the inversion operatcr. As a set of

axioms, the list is complete but redundant.

(a) (b)

0• 1 1 0 (3-1)
xAo0 o xvl l (3-2)
xA 1 x xV O= x (3-3)
x, Ax= 0 xvx= (3-4)

x x (3-5)
XA X=X P XV x= x (3-6)

X A--- y x v y X VY = xA y (3-7)



(a) (b)

xP y=y^x xv yyv x (3-8)

XA (yA z) = (xA y) A Z xv (yv Z) = (x V y)V Z (3-9)

xA (yV z) = (xAy) V (x Az) xV (yA z) = (xvy) A (xv z) (3-10)

The first approach to defining a Galois AND, Galois OR and Galois NOT

is as follows-

Sn = m (3-11)
S= + ,1n+ EM (3-12)

= . (3-13)

In this case, all the identities above hold for GF(2n) except for (3-4),

(3-6) and (3-10). Thus, while under these operations the Galois field has

many of the features of a lattice, it is not a lattice. The failure here

seems to be rooted in the fact that Galois NOT is uninterpretable as a

complementary set (3-4) and that Galois AND and OR are not true reducing

!i jand collecting operators, as indicated by the failure of the idempotency

laws (3-6) and DeMorgan's laws (3-10). Enough of the lattice structure

i jsurvives to make meaningful use of some lattice intuition in utilizing

(3-11), (3-12), and (3-13). Implementation of (3-13) for additivo codes

is just bitwise inversion, as illustrated in Figure 5. Figure 6 displays

£ •the Galois OR gate for (3-12).

Figure 5. A Galois NOT Gate for GF(2A)
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Note that (3-12) mixes first and second order terms. One might hold

this feature responsible for some of the faijures above and try to elim-

nate them by defining

+ +• (3-14)

This definition salvages (3-6b) and (3-10a) but only at the expense of

(3-2")), (3-7) and (3-9a).

Part of the purpose in seeing how closely one can approximate lattice

operations in Galois structures lies in the desirability of building up

Galois functions from specific conditions much as Boolean functions can

be generated by collecting minterms on which the function is nonzero.

Characteristic functions provide a foundation for such developme,,t. The

characteristic function for the sequence a of Galois values is the func-

tionx_(E), defined

0 if E a

( = (3-15)

Like all other Galois functions, characteristic functions can be written

as polynomials. Here,

S ff= 1 + (gi + i)n*

From (3-15), it is clear that every Galois function of one Galois variable

can be written

n

-2L-



and that every Galois function f(C) of the sequence of k variables • can

be written

V(O o r)x_'(g)*

A true lattice structure can be defined on GF(2n) which makes char-
acteristlc functions the atoms of a distributive Galois lattice. Let C be

the code for GF(2n), and define the set transform S:GF(2n) -- n such that,

for each a a GF(n),

S ((Y) = i : Ce = 11

I Now define

S=s (n- s(O)), (3-16)

Sv =S (s U S), and (3-17)

1 -1A S (s( n ms). (3-18)

The structure <GF(2n); V, A, > is a distributive lattice, with features

corresponding closely to the two-value Boolean lattice structure. In

particular, the formula

- • f(0) = v f-(00 ) 2

- _ for k Galois variables E is the Galois analogue of.

f () = V Yipi•)

the selected minterm formula for k Boclean variables x.

-2 5,



As a lattice, the Galois operations (3-16), (3-17) and (3-18) are

the most convenient from a mathematical point of view. Unfortunately,

they would not seem to be good choices for an MSI/LSI technology because

their inplementations grow linearly with n instead of n2, resulting in

poor gate-to-pin ratios.

I -

I

I
-
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SECTION IV

SPECIAL NETORKS

This section discusses two tecbniquea utilizing networks related to

Calois logic design. Each offers a specific network, depending both on

the power of the Galois field and the selected code. The first is a

method of enhancing a Galois multiplication gate to perform binary ad-

dition, while the second offers an improved versior of the linear Galois

gate.

Let y be a generator of GF( 2 n), and let L be the logarithmic code

ML(y) = B(i), i cn",

where B(i) is the reverse binary expansion of i. Galois multiplication

has the property that

O-x= x-O = 0, for all x, and

i j (i+j) rood n* j

Thus, a Galois multiplication gate for code L performs the function

:• A•, B(1))= ((1)i), and

A(_~i) _BJ))= _(i + I• mod n*), i, j e n ,

-27-
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where "I" denotes the ones sequence and A is an n-bit adder with end-

around carry for integers written in (reverse) binary notation.

Now let C be any code for GF(2n), and define translators

S = C L and T = -L C7. (4-1)

If M is the Boolean function sequence performed by a multiplication gate

for C, then

S* ,no * ooB(i + j mod n) = _i(y +j mod = T c(mi+ od n

S~~~~(y) TCy) (.(y) y)
=_T _Mc(& , g =_Y_)) 1 1!~%i,_.S 1Y))

LS _Bi), § P(J)), i, j, n*.

Figure 7 illustrates the general ne-worl. suggested by the equazion for a

four-bit adder with end-around carry.

t

M___T_____(i+ j mod n_)

Figure 7. Use of a Galois Multiplicadion Gate for an
Adder with End-Around Carry
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An example of this method of .mplementing four-bit adder with end-

around carry is now developed with code C given in Table I. In this case

(4-1) is satisfied by the logic networks of Figures 8 and 9, while a

Galois multiplication gate performing M for code C is illustrated in

Figure 10. Other choices of codes may result in simplifications of net-

works for S, T and/or _M.

Table I. A Code C For GF(2 4)

2 3 4 5 6x 0 1 Y Y Y V Y

X: 0000 Iiii 1000 0100 1101 0010 1010 1110

S7 89 10 11 12 13 14

X 0011 0001 1o01 0101 0110 0111 1100 1001

The second technique to be mentioned here is an improved version of

the Galois linear gate discussed and utilized in [ 5]. An iuý-cmentation

of the Galois linear function (y + zx) was offered there consisting of a

Galois multiplication gate and Galois addition gate. It was natural to

expect that direct implementation of the linear function would result in

some internal saving. It is now seen that the internal hardware is re-

duced slightly, to a bit more than that of a Galois multiplication gate-

in the forthright manner indicated in Figures 10 and 11 for code G given

in Table II.

Table II. Geometric Code G for GF(2 4 )
!2 3 4 5 6

x 0 1 y Y y Y Y Y

Gx 0000 1111 1,10 1101 1000 Ol1 1001 0100

1 7 8 9 10 11 12 13 14

Gx 1100 1011 0010 0110 1010 0001 0011 0101

j ~-2-
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a2 a 1

z 2 2
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Figure 10. Galois Multiplication Gate for Code
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Figure 11. An Improved Linear Module for GF(2 4 )
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It is evident that the hardware saving from this technique grows at

most linearly with the power n of the field while the complexity of the

Galois multiplication gate increases with n*. Thus, one cannot expect

significant proportional savings in hardware for large values of n,

though switching speed may be significantly enhanced for any value of n

by saving a level of hardware. Nevertheless, in view of the minimal

difference in compleuxity between the Galois multiplict• ion gate and its

eriancement to a linear gate, it seems unlikely any further improvements

will be found. Thus, for additive -odes, linear gates of this type may

be regarded as optimal, given the optimality of the Galois multiplication

gate utilized. Another corollary to this technique is the fact that,

due to their minimal difference in gate count, the choice between the

plus-times system of [ 5] and the linear system must be made on the basis

of the plus-times requirement of two Drimitive gates, each with 3n pins,

-- -red to the single 4n-pin primitive gate required for the linear

Ilk
-33-



SECTION V

GERERALIZED LINEAR NETORKS

This section considers a generalization of the linear module and its

use in hardware :eduction. A linear function of dimension d is a Galois

function of the form

10§0 + 11191 + + ld-2ýd-2 + Id-r (5-1)

A Reneral linear function is a linear function of unspecified dimension.

Used without dimensional specification, the term 'linear functiont is

reserved for the linear function of dimension two. A nonfactor cascade

of linear modules is a cascade of linear modules in which the output of

each linear module is the nonfactor input of its successor.

Proposition 5.1, A linear function of dimension d is generated by a non-

factor cascade of d linear modules. 12

Fig/re 12 illustrates the method of generating the d-dimensional

linear function by means of a cascade of d linear modules.

A choice set of iniputs to a d-dimensional linear function (5-1) is

any subset S of d inputs such that for each i (i = 0, ... , d - 2) either

t. or Ji is a member of S. Let N be a network of general linear modules

without internal fanout. The external inputs of N are those module-inputs

which do not arise from previous levels. The network N is called immediate

if every general linear module in N has a choice set of external inputs.

In [5j the following theorem was proven establishing the function of

a network of linear modules to be largely independent of its geometry.

PRECEDING PAGE BLANK
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110 T1 1 "2 1)3 "4 1]5 16

T1 7 - u .

1 4

•0 1 '2 "3 g4 5 '6

Figure 12. The Nonfactor Linear Cascade of Dimension Seven

Theorem 5.2. If N is a (k - 1)-node immediate network in the linear

system, there exists an appropriate sequence of selection variables and

powers of F to be introduced at the external inputs of N which enables N

SI to perfoin a genera]l polynomial of length k. []

S| Now a similar theorem is proven for networks of general linear

SImodules. Define the dimension of a network of general linear modules as

I the sum of the dimensions of its modules.

j i Theorem 5.3. Let N be a (k-l)-dimensional immediate network of generalI I linear modules. There exists an appropriate sequence of selection

variables and powers of E to be introduced at the external inputs of N

which enables N to perform a general polynomiel of length k.

Proof. By Proposition 541, each general linear module of dimension d in

N may be replaced by a cascade of d linear modules. If N' is the network

resulting from N by replacing each general linear module by such a cascade,

then the total number of linear modules in N' is just (k - 1), and N' is a

-36-



( 1)-ncde immediate network of linear _odules. By Theorem 5.2, there

is an appropriate sequence of selection variables and powers of ý which
can be introduced at the external inputs of N' which enables N' to perform
a general polynomial of length k. The same sequence of inputs applied to
corresponding points of N then establishes the theorem. El

The effect of the above theorem is to suggest minimally redundant,
fault-tolerant arrays similar to those of [55], utilizing d-dimensional

linear modules. This permits the use of arbitrarily complex cells in the
array without a corresponding increase in field power. If on the other
hand one wishes to reduce hardware, Figure 13 illustrates a means of re-

ducing the d-dimensional linear gate to a single linear module. In

general, hardware required for a d-dimensional linear gate can be reduced
by a factor of approximately Ld/k-1 at the cost of a Fd/kl-increase in

switching time.

A similar network, consisting of a single linear module and a unit

delay, can be used to generate a general polynomial of length k in (k - 2)
clock pulses, as in Figure 14.

A v•neral polynomial module of length k, together with a linear module

anld a t delay, generates a general polynomial of length tk in t- 1 clock

pulses. For

TI 1) =... I 2n-(i -l)k -l) .

fi =(t-i)k + + Ttk 19ik-l3

ft - + "'" + t •t-l"

Thus, for t = 2 n/kl, the sequential network of Figure 15 is universal.
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Ii " d-1 -OOFO + + 'd-1

E

Figure 13. Sequential Implementation of a General Linear Gate

I!

1 11*k-i-2f~f.
f • fk-1 - 0 + " "+ •k-1iEk-1

I k-I = to

•I Figure 14. Sequential Implementation of a General Polynomial
from a Linear Mdule
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(m-i)k k - m"(i-l)]k-i

k - 0m k-1
frn-i =) + +* +)mkl

0

Figure 15. Sequential Implementation of a General Polynomial from a
Unear Yodule and a General Polynomial of Fractional Length
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SECTION VI

- FUTURE PLANS

Research in Galois logic design has, till the present, been primarily

concerned with various primitive gates and their synthesis. It is possible

now to interrelate choice of code and primitive complexity. "'arieties of

primitive sets have been considered, such as the plus-times rystem, the

plus-times hybrid [51, the linear system, Galois pseudolattice systems

S* (Section Three), general linear primitives (Section Five), etc. Further-

more., methods of arriving at Galois functions satisfying Boolean truth

tables are known (Q5]). To make Galois design practicaL, two major areas

E remain to be developed.

First, it is necessary to examine the effect of code choice on the

complexity of the Galois polynomial. Similarly, when the number of Boolean

functions to be developed on a set of Boolean arguments is less than the

power of the overall Galois field, how does the determination of don't-

care conditions affect the Galois polynomial? Heuristic answers to these

questions may be obtained by means of computer assistance. It is hoped

that they will point in the direction of simpler less expensive Galois

networks by means of systematic, judicious selection of code and don't-

care resolutions.

Second, once the Galois polynomial is available, how is it simplified
S~to reduce gate-count? In principal, a circuit may require a very large

number of Galois gates, even for relatively small field power. It is

essential to reduce this number by means of factorization and nesting

techniques. So far. research in Galois polynomials has concentrated on

deriving polynomial roots, due to the influence of coding theory. This

object-ive seems far less relevanT to logic design in that it ignores

PRECEDING PAGE BLANK -



function decorposition. It is rather clear that the power of function
decom ,sition algorithms must be brought to bear on the artifically in-

flated gate-counts of the initial Galois polynomial. It is anticipated

that this will be a major effort, but such algorithms are essential to

the establishment of the practicality of Galois logic design.
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APPENDIX

Like set theory, category theory provides the vocabulary and basic

structure as a universe of discourse for whatever discipline has been

placed in its setting. Unlike set theory, instead of studying the internal

structure of individual objects, category theory focuses attention upon

the relations and functions existing between them.

Let X be a class C of objects together with two functions, hom and •

satisfying the following conditions.

Cl. For each pair of objects X, Y in C, horn (x, Y) is a family of

elements, called morphisms.

C2M For each triple of objects X, Y, Z in C, if f is a member of

horn (X, Y) and g is a member of horn (Y, Z) then g-f is a member

of horn (X, 7'.

If f is a member of horn (X, Y), then f is said to have domain X and

codomain Y, all of which is indicated by writing "f:X-- Y". Whenever it

exists, g.f is called the couposite of g with f.
X = (C, horn, -) will be called a category if, in addition, the fol-

lowing tw axioms hold.

C3. The operation - is associative; that is, for W, X, Y, Z in C,

if f:W-->X, g:X -- >Y and h:Y--oZ, then h.(g.f) = (h'g)-f.

C4. For each object X in C, there is a two-sided identity 1X with

respect to the composition operation; that is, there exists a

morphism Ix:X-3-X -ach that, for each Y and each f:Y--X and

g:X--Y, ixf= f and g-• = g.

-43-
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A functor I from category X= (C, horn, .) to category X' -

(C', horn', .) has the following properties:

Fl. 0 is a function from C to C';

F2a. for each pair of objects X, Y in C, if f:X-->Y, then

3 (f): -(X)--> 3(Y), or

F2b. for each pair of objects X, Y in C, if f:X -- Y, then
a Mf : ,1 (Y)--1.- 41( M

F3a. for each pair of morphisms f, g of X for which g.f is

defined, J(g.f) = 0(g).•(f), or

F3b. for each pair of morphisms f, g of X for which g-f is

defined, G(g.f) )

F4. for each object X in C, iX = l(x).

The functor is covariant if it satisfies (F2a) and (F3a), contravariant

if it satisfies (F2b) and (F3b). (See Figures 16 and 17.)

f •& (f) X ()

f f

Y 3y) Y 3 brj(Y)

a. Covariant Functors b. Contravariant Functors

I Figure 16. Typical Behavior of Functors
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- r_ ~ - __(x) • 7 -

-- 1

X f(X) 
one oh

R. .
g (g

9 g f 
(g.f) 

.

z 3z

Figure 17. Hom)morphic Behavior of a Contravariant Functor

The last concept to be introduced is that of a universal element.

A universal element of a contravariant functor 3 on a category Xis an

object R and an element u of J (R) with the property that, for each object

X of X and each member v ofU(X), there is exactly one morphism h:X--.o R

A such that

U(h)u =v.

(See Figure 18.)
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R U

h j5h)
V Vi

S•v--(h V)u

Figure 18. Universal Element u e J(R) for a Contravariant Functor
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